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such a scene, where a human observer or a machine vision
1. SUMMARY system may be required to look for and detect military

targets, such as a tank. This scenario is quite general. The
etis g pa etripreses anr thexpearchanddcrime e or ofo aassociated problems provide a number of interesting research
evaluating metrics for the search and discrimination of a issues in computational vision. For example, what is thenatural texture pattern from its background. Such metrics underlying model for integrated search and discrimination?

could help identify preattentive cues and underlying models What preattentive cues affect search or discrimination? How

of search and discrimination, and to evaluate and design can we evaluate the relative ease or difficulty of an observer

camouflage patterns and automatic target recognition

systems. Human observers were asked to view image stimuli
consisting of various target patterns embedded within various
background patterns. These psychophysical experiments
provided a quantitative basis for comparison of human
judgments to the computed values of target distinctness
metrics. Two different experimental methodologies were
utilized. The first methodology consisted of paired
comparisons of a set of stimuli containing targets in a fixed
location known to the observers. The observers were asked
to judge the relative target distinctness for each pair of
stimuli. The second methodology involved stimuli in which
the targets were placed in random locations unknown to the
observer. The observers were asked to search each image
scene and identify suspected target locations. Using a
prototype eye tracking testbed, the Integrated Testbed for
Eye Movement Studies, the observers' fixation points during
the experiment were recorded and analyzed. For both
experiments, the level of correlation with the psychophysical
data was used as the basis for evaluating target distinctness
metrics. Overall, of the set of target distinctness metrics
considered, a metric based on a model of image texture was Figure 1: An illustration of camouflaged targets in a
the most strongly correlated with the psychophysical data. natural scene.

Keywords: target detection, human visual search, attempting to locate a selected camouflage pattern in a
discrimination, eye tracking, target signature metrics, image natural scene? How can we design the most effective
texture camouflage pattern for a naturally textured scene? How can

we rank the capabilities of automatic target recognition

2. Introduction systems in relative terms?
In this paper we describe our efforts directed toward the

This paper deals with the issue of the development and resolution of these kinds of questions. We restrict our
assessment of useful computational models and quantitative investigation to only textured patterns and static images.
metrics for integrated search and discrimination tasks. The Issues related to color, range (or depth), and motion,
approach is experimental in nature, where psychophysical important as they definitely are, cannot be examined in the

data provides the guidance and support for comparative limits of the scope of our research. We do believe that the

assessment of various metrics. This research is performed in overallsex pe frark We o utlityan vle
the verll ontxt o serchanddetctio ofcamuflgedoverall experimental framework will be of utility and valuethe overall context of search and detection of camouflaged for studies involving other cues.

targets in natural scenes. Figure 1 illustrates an example of

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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The ultimate goal of this line of research is the development the relative effectiveness of target distinctness metrics at
of a robust and quantitative means for characterizing the representing perceived target distinctness.
signature strength of a target in a sensed image. The
signature strength measurement should be closely correlated 2. TARGET DISTINCTNESS METRICS
to the ease or diffictIlty of a human observer attempting to
detect it [ I]. In this context, the signature strength of a target In some previous experiments [6. 7, 8. 91, we have ohserved
is equivalent to the distinctness of the image pattern three major perceptual cues that humlans tend to utilize in

representing the target from the pattern of its specific judging target distinctness. These cues can roughly be called
hackground. Metrics that are successful at measuring contrast, texture differences, andbounry strength. There

Pecere ar - in ter possible perceptual cues, hut theseperceived target distinctness would be a key component of a are certainly many oth
computational model of htIman visual target acquisition 121. three seem to he the strongest. In this section, we discuss
Such a model could lorm the basis of an automatic target some specific metrics that attempt to measure the strengths
recognition system for autonomous robot sensing or military of these three perceptual cues for a particular target and its

weapons applications [3]. It could also serve to improve the local background.

assessment of military camouflage patterns and the
development of more effective ones 14]. 2.1. Measuring Contrast

For the purpose of defining the scope of this research, we Contrast is typically measured with first-order metrics, ones
will consider human target acquisition to involhe target that can be computed solely from the histograms of the target
detection tfllowed by target recognition. The detection task and local background fields 151. A histogram is considered a
is that which establishes the existence and location of ain first-order probability distribution since it can be calculated
object. Recognition is the task of dleterniining the by considering the gray levels of'pixels individually (one at a
characteristics ol'the object which indicate its identity, such time). Statistics calculated from a histogram are capable of
as its size, shape, etc. Further. we will consider target characterizing the overall brightness and variance of the
detection to consist of the combination of the individual tasks patterns. Probably the earliest target distinctness metric is the
of search and discrimination. Search is the process of
locating areas of a scene in which to direct our attention. AT = Ili -- lh I.
D)iscrimination is the process of segregating a potential area-weighted average ATJ 10]. cvhich is simply the
o/!ject I'rom its immediate background. This approach is papery. difference between p, and pt,. the computed mean gray levels
similar to the conclusion of O'Kane el a1[ 151. In this paperg of the tarret and background fields:
we are concerned with the target detection task. comprising o
search and discrimination, without considering recognition. The Doyle AT [5] incorporates the computed standard

We conducted two different types of psychophysical deviations of the target and background fields, (t, and (rT,:

experiments to generate quantitative measurements of EIfTPOT, an abbreviation for "effective pixels on target," is
perceived target distinctness for comparison to various target comnputed as the number of pixcls in the target pattern whicll
distinctiness illetrics. ThIl first type of exper-ilietit itivolv'ed1,.
paired comparisons of iiage stimuli that contain a target Doyle ,+ - , + (o7- uh )
pattern embedded in a background pattern. in a constant have a gray level that differs From the ican gray level of the
location known to the observers. The patterns consisted of local background patteri hv more than two standard
various textures extracted from imiages of natural scenes. For deviations of the hackground histogram. This metric has
every stimulus, tile target field consisted of a square shape of

a constant size. We say that this experiment is a study of pure shown promise. especially when comibined with the D)oyle

discrimination. since there is no search or recognition [5].

involved. For each pair of stimuli. the obscrvcr was required
to select which of the pair possesses a target that is more 2.2. Measuring Texture Differences

distinct. By combining tile decisions from a number of The texture cue has been successlfully ieastired with second-
observers. it was possible to estimate numerical scale values order metrics, ones computed from the gray level
for the relative levels oif perceived target distinctness in the cooccurrence (GIC) probability distributions of the target
stimuli. These psychological scale values were compared to and the background 17, 11, 121. After Bela Julesz made the
the computeod values of target distinctness metrics. The important conjecture about the role of second-order statistics
second type of experiment utilized image stimuli that contain in human texture discrimination. (itC models have found
several target patterns embedded in a background scene. in many useful applications in machine vision [13]. In several
random locations unknown to the observers. In this studies to compare the relati\e power of various texture
experiment. the observer needed to perform both search and analysis tecllikLues to perforni texture discrimination, GIC
discrimination. As the observer searched the scene for matrices generally outperformed other methods [14, 15, 16].
targets, his eye fixation points were determined by' GIC's have also been used for object detection [17], scene
processing video of the observer's eye. The fixation point analysis [18]. as well as texitire synthesis 19, 20, 21]. Other
data fioni several observers were used to colIpute various studies have demonstrated the wealth of texture iiiformation
statistics for each target indicating how easily the observers contained within (ilC's [22.23.241.
located it. including the likelihood the target was fixated or
identified and the time required to do so. These computed A GIdC probability distrihution is calctlated by considering
statistics served its another quantitative basis for evaluating the gray levels of pixels in pairs (two at a time), capturing
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information about the spatial relationships between pixels. For a target field that is a perfect square, such as in our
As such, GLC probabilities are often used as a model of stimulus images, we have nh,,,,.j = n,1,,=- nho,,,,d. In this case,
image texture. One second-order metric that has shown great the equation for ABS reduces to
promise is average cooccurrence error (ACE) [7]. The ABS measure does not take into account the values of

It is defined as any pixels that do not lie adjacent to the target/background

ACE= 1 - i, j I -, P (J I A- 1 -- m(C,,,, + Crig/.. + C,+C , )
TN(;L( Ael) i=0 .1=0 4 h,,,,o,,d

where TNGLC is the total number of displacement vectors in 1 +
the set D of vectors in the texture model, G is the number of top C Clef i

possible gray levels, P, (i, jJA) is the joint probability of a b

pixel of gray level i and a pixel of gray levelj given the boundary. However, a target/background boundary that has a
displacement vector A=[A,× Ay ffor the target pattern, and Ph high value for ABS may not be very distinct if it is embedded
displacement vector [ the targetponding patte in a region that already is characterized by a large amount of
(i, jlz) is the corresponding joint probability for the contrast. To take into account the contrast of the entire

background pattern. For computing this metric, we normally region, we use relative average botndary strength (RABS):

consider all possible displacements of up to a maximum of

TNx =TNY = 8 pixels, yielding a total of TNOLC =2T"NX TNY +tNX where n,.<,i,, is the number of adjacent (either vertically or
+TNV= 144 displacements. If the original image is quantized horizontally) pixel pairs within the target field or in the

to 256 gray levels, the pixel values in the target and ABS
background regions are reduced to G=8 possible gray levels RABS =
for computation of the model. Since each of the 144 GLC I i '" C()
matrices in the texture models is of size GxG, using a full ,,,• Z

G=256 gray levels produces a data structure that is background near the target. Essentially, RABS is the ratio of

prohibitively large. the average contrast along the target/background boundary to
the average contrast between adjacent pixels in the vicinity.

2.3. Measuring Boundary Strength 3. THE ITEMS TESTBED

The third class of target distinctness metrics we considered
consists of metrics, which attempts to quantify
target/background boundary strength. Even if a target's 3.1. Overview and Utility of ITEMS

texture pattern is very similar to the texture of its local This section discusses the design and implementation of
background, discontinuities along the target/background ITEMS - the Integrated Testbed for Eye Movement Studies.
boundary can still serve as a perceptual cue [25]. One way to This prototype eye tracking testbed consists of an integrated
measure this is to compute the average contrast between the system of hardware and software which allows an
pixels lying on either side of the target/background experimenter to present an observer with an image displayed
boundary. For a single point i along a boundary, the contrast on a high resolution monitor and have the observer perform a
is visual task. Figure 2 shows a test subject studying a

displayed image scene while ITEMS tracks his eye fixation
ci) = P, Wi)- P/, 0i, points. Using ITEMS, not only can we determine whether a

where p, (i) is the gray level of the pixel just on the target particular target was identified by an observer, but also

side of the boundary and ph (i) is the gray level of the whether the target was ever fixated by the observer (even if it

adjacent pixel just on the background side. For a target field was not identified as being a target), how long did it take

that is a rectangular lattice of pixels, the lengths of the before the target was first fixated, how long the target was

boundaries are n,v = nbt,,,w,, = nh,.i and nik, = n,.i =-- n,.,,.,. The studied before it was identified, what search path the

average contrast for one boundary (such as the top boundary) observer took on the way to the target, and any number of

is other aspects of visual search.

The hardware components of ITEMS are a Silicon Graphics
1 ,Lhoi Indy computer workstation with high resolution color

C,, =c(i), monitor, a Sony CCD black and white video camera fitted
nh,,,: i-1 with a 50mm lens and 5mm lens spacer, a Datacube MaxTD

where i is just a summation index for the boundary points, image processing system containing a MaxVideo-200
pipeline processor and MVME-167 CPU system controller,

Then the average boundary strength (ABS) for the whole and an adaptable yet sturdy apparatus to which is mounted
target is: the camera as well as a helmet for restricting observer head

movements. The software components of ITEMS include an
X-Windows application to handle the image scene display

ABS= (Clop + C"""n )+±n , (Ckp +-Crigh+ ) and observer response registration for the Indy workstation,

ABS /pupil centroid tracking and registration for the Datacube
2 n/ii,.i + 2n,,,,,t MaxTD, a utility for fixation point estimation and head

movement adjustments, a utility for spatial calibration and
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Figure 2 A test subject studying a displayed image Figure 3: The interconnectedness of the
scene while ITEMS tracks his eye fixation, points.

error interpolation, and another for calculation of target locates. tracks. and records the pupil ccntroid location of the
fixation and identification statistics. observer's left eve. The observer's head movement is
All required images are created by the experimenter restricted using a basehall-batting helmct. which is rigidly
beforehand. This includes a zero point image. several mounted to the table, using adjustable aluminunm extrusion
calibration images, and all desired experiment imagc scenes. material. This material allows the helmet to be raised or
The procedure is that the zero point image is displayed first, lowered to accommodate different observers and also to be
then all calibration images in succession, the zero point locked into place when the appropriate position is found.
image again, and then any number of sessions of experiment I-lead movement is further restricted by a chin rest.
images, each pair of sessions separated by another The camera is mounted directly in front of and below the
presentation of the zero point image. The number of observer, just below the Silicon Graphics monitor, looking
experiment sessions and number of images in each session upward at the observer's left eve. This location was found to
can vary, but it has been found that five images per ,session provide an adequate image of the observer's left eye and a
with one calibration session and two experiment sessions small reference mark affixed just below the eye. This
results in a moderate ten minutes of data collection for each reference mark is a small, glossy black paper circle, used to
observer. distinguish eye movements from small head movements.
The zero point image is an image with one target that is The observer's face is illuminated \\ith a small portable
located such that it is directly ahead of the observer's left eye flashlight as necessary to segregate the pupil and reference
when displayed on the monitor. The target consists of a mark together from the rest of the video image. The
square region of uniform gray level against a background of Datacube MaxTD also has a small terminal screen, which
a different gray level. This image is used to establish a allows the experimenter to monitor the status of the image
reference point to which all eye movements can be related processor's eye tracking. and the video from the CCD camera
and also to measure periodically the change il fixation point is simultaneously displayed on a small monitor for the same

estimates that is the result of small head movements purpose.
accumulating over time. This procedure is described later in
Section 4.5. 3.3. Image Scene Display and Observer Response

Each calibration image consists of a row of square targets. Registration
The targets in all the calibration images taken together Image scene display and observer target identification
constitute an array of evenly spaced points, which are used as Iescene dispran orver g identificonsample points at which to measre te error i fixation pointte Silicon
estamplepoins atwhich to measurement tdelg error. in fati e pGraphics lndyv workstation. The X-Windows application
estimlates due to measurement and modeling error. As these created for this purpose is called I SPY. I SPY is used to
errors will vaiy over different spatial locations in the display load each imace scene stimulus from disk and display it on
image. a number of samples are taken and then adjustments the high-resolution color monitor. In experiment mode, the
are made in fixation point estimates from an interpolation of observer uses mouse buttons to indicate when to display each
the calibration samples froom the vicinity of each estimate. image. when he wx ishes to identifyv a suspected target, and

when he is finished searching a particular scene. In playback
3.2. ITEMS Hardware Configuration mode, ISPY allows the experimenter to study the data by

Figure 3 shows tie interconnectedness of the various displaying the image scene stimuli with a cursor which
hardware components of ITEMS. ,riefly, the Silicon moves about the images indicating the observer's fixation

Graphics lndy workstation is used to load each image scene points over time.
stimulus from disk and display it on its high-resolution color
monitor. The Sony CCD video camera sends continuous
video to the Datacube MaxTD image processor. which



21-5

3.4. Pupil Centroid Tracking and Registration since the first zero point image at the beginning of the

The tracking and registration of pupil centroid position is calibration session.

handled by the Datacube MaxTD image processing system.
The procedure is to first threshold the video frame such that 4. STUDYING PURE DISCRIMINATION
both the observer's pupil and the black paper circle affixed This section describes a psychophysical experiment designed
just below his eye appear as black circular blobs in the to investigate the task of human target discrimination
image. The resulting binary image is then subjected to a separate from visual search, or "pure discrimination." The
connectivity analysis, which computes the number of blobs image stimuli used in this experiment consisted of target
in the image and a roundness measure for each. The patterns embedded in background patterns, in a constant
roundness measure is computed by finding a best-fit ellipse location known to the observers. With such stimuli, it is
for each blob, and calculating the ratio of the two axes of the unreasonable to ask observers to make absolute judgments of
ellipse. The roundness measure is used to separate the pupil target distinctness because of the complex nature and wide
and reference mark blobs from various shadow artifacts, range of criteria that could be used in such a judgment.
which generally do not appear as round blobs at all. The Instead, we only asked the observers to make relative
values that are stored are the centroid differences in both x- judgments of target distinctness. The image stimuli were
coordinates and y-coordinates between the upper blob (the presented in pairs, and the observers were required to select
pupil) and the lower blob (the reference mark), along with which image of each pair possesses a target that is more
the current timestamp. Thus it is only movement of the pupil distinct. By combining the decisions from a number of
relative to the reference mark that is tracked and registered. observers, it is possible to estimate numerical scale values for
In this way, movements of the eye can be distinguished from the relative levels of perceived target distinctness in the
small head movements. That is, a small head movement will stimuli. These psychological scale values were used as a
result in a change of position of both the pupil and the quantitative basis for evaluating the relative effectiveness of
reference mark in the camera image. Although a helmet our target distinctness metrics at representing perceived
mounted in a fixed position and a chin rest are used to restrict target distinctness. The established method for
observer head movement, in practice there is still a bit of a accomplishing this "psychological scaling" is the law of
small head movement even with the most cooperative comparative judgment (LCJ), introduced by Thurstone [28,
observers, due to breathing, heartbeats, etc. 29]. The LCJ is based on the postulate that if a stimulus is

presented to a human subject, it excites a discriminal process,
3.5. Eye Tracking Geometry and Fixation Point which has some value on the psychological continuum. It is
Estimation also assumed that this value will not be exactly the same

Details of the fixation point estimation process are given in each time the same stimulus is presented, but rather these
values will form a normal distribution along the continuum.reference [26]. Briefly, the steps necessary to obtain the Frmr nomto bu h pcfcmto oetmt

fixaionestiateforeachdat samle re:For more information about the specific method to estimatefixation estimate for each data sample are: the scale values, see reference [7].

1. Extract the values for the difference in x-and y- The 15 image stimuli used in the experiment are shown in
coordinates between the pupil centroid and the reference Te1 mg tml sdi h xeietaesonipoint centroid from the data file of the pupil centroid Figure 4. The computer environment that was developed to

automate the sequential display of the image stimulus pairs
tracking program. and the registration and recording of subject responses is the

2. Compare these values to the same values from the X-based Perceptual Experiment Testbed (XPET) [6, 7].
moment the observer identified the first zero point. The XPET was used to present 20 observers with all 105 possible
change is taken to be the movement of the pupil center pairs of the 15 stimuli. The raw judgments were used to
in the camera image from the zero state. estimate an appropriate scale value for each stimulus.

3. From the location of the pupil center in the camera Figure 5 shows graphically the locations of the scale values
image, find its location in world coordinates using the along the perceptual continuum representing target
inverse perspective transform [27], subject to the distinctness. These scale values indicate only relative
constraint that the point is known to lie on the front side amounts of target distinctness in the stimuli as judged by the
of the sphere representing the eyeball. observers, and have no absolute meaning. The stimulus

containing the target judged least distinct was stimulus DF.
4. Based on the location of the pupil center in world This stimulus is assigned a scale value of zero, and the scale

coordinates, find the intersection point of the line is constructed upward from that point. The stimuli
representing the visual axis and the plane representing containing the most distinct targets as judged by the
the display image. observers were stimuli CF and CD. The sample correlation

5. Find the fixation point estimate by converting the coefficient was then computed between the vector of
location of the intersection point from world coordinates psychological scale values and the vector of each of the
to display image coordinates (x' and y'). computed target distinctness metrics. The results are given

6. Adjust the fixation point estimate for small head in Table 1. Figure 6 shows the test images plotted with their

movements by subtracting the average of the error for LCJ scales and computed values for the ACE metric.

the zero point at the beginning of the session and the
one at the end of the session. For each zero point, the
error is taken to be the change in fixation point estimate
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(a) Stiumlus AB (b) Stimulus AC (c) Stimulus -AD

(d) Stmulus Ae ()Smuu l f tmlsB g tmlsB

(d) Stimulus BE (e) Stimulus B-F (f) Stimulus BCD (g) Stimulus CE

()Stimulus CF (in) Stimulus DE (ix) Stimulus DP (o) Stimulus EF

Figure 4: The 15 256 x 256 test images for the discrimination experiment.

\\h ere , v is the response (dependenit) v ariable. is the
4.1. Multivariable Linear Regression and Multiple independlent variable. 11, -ind [11 are regression parameters.

Correlationand r. is the err-or w\hich is pi-esumned to be normally
We no\\ compare the psychological scale values to not one. distributed wýith mecan of p-t and variance of t&-2 Previously,

hot several variables. ihe sinolc variable linear regression Y recpresenited the stimutlus scale valuec estimated from the

model is of the form psychophysical dlata and.): represented anly one of the image
mietrics tha~tweer Stu(Nlljna Sih stiullji ill the
experimnirt, aculj~\C\,llp INb~ haI N a

y A + x/61 + 111, ,S
the entire model is w\ritten
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Figure 5: The relative locations of the scale values along the perceptual continuum representing target distinctness.

TABLE 1: The sample correlation coefficients TABLE 2: The multiple correlation coefficients for
(r) between the vector of stimulus scale values selected pairs of netrics.
for perceived target distinctness and the vector
of each of the target distinctness metrics. A T Doyle Eff-POT ACE ABS RABS

A T 0.72 0.59 0.8& 0.65 0.78

A T 0-14 Doyle. - - 0.90 0.83 0.75 0.89

DI:)cyI O 66 EffPOT - 0.88 0.80 0.78

Rff -PQT 0-5 7 ACE - 0.88 0.87

ACE O-8a ABS - - - 0.80

AI3S 0.6.5 RABS - --

JRA]3S 0.7-

matrix of computed image metrics with k + 1 rows and N
Mum irl T.rim bdhrarm. -. P.pd C0Ppk. IL O 1 Mcolumns. (Actually, the first row of X consists of all l's

which are dummy variables so that the additive constant
parameter P3o is included.) The least squares solution for 03 is

"given by 8 = (XX')-1 [30].

p... EE..l;* - Statistical correlation can also be extended to multiple
independent variables. We previously performed a simple

correlation to measure the degree of linear association
S_- between two random variables. We can now utilize multiple

correlation to measure the maximum correlation between the
I. "dependent variable and a linear combination of a set of

independent variables. This enables us to test the ability of
various linear models for the human texture discrimination

. .-- process to explain the empirical data. The multiple
correlation was.computed for all possible pairs of the metrics
considered. This value is defined as the highest value of the

CA 9A~ 1.4 .9 Si correlation coefficient computed between the scale values
A=c ,=d. C-.-k, and a linear combination of the two metrics. The results are

Figure 6: The test images plotted with their LCJ given in Table 2.
scales and computed values for the ACE metric. Additionally, we can use multiple correlation to test the

effectiveness of various models consisting of linear
Y = )60 + X/, 1 + 8, wherey'= (y ... , YN) represents combinations of more than two metrics to predict the
the N scale values x '= (xi ... , xN ) represents the N psychological data. For this analysis, four metrics were
computed values of the particular image metric, and E'= (FI, selected as the most promising out of the seven which were

...x ) represents the error for each sample. tested with pairwise correlations. These four metrics areassigned numerals 1-4 as follows:I = Doyle, 2 = Eff POT, 3

We actually have k independent variables (image metrics) = ACE, and 4 = RABS. The models tested are a linear
interacting simultaneously. Now, the model can be written combination of all four and every possible combination of

y = X',8 = 8, where the differences are that 3 is a k±+ three. The results of this are given in Table3.

length vector of regression parameters and X is a rectangular
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TABLE 3: The multiple correlation coefficients and 5. STUDYING INTEGRATED VISUAL SEARCH

corresponding regression parameters for selected linear AND DISCRIMINATION PROCESS

combinations of metrics. This section describes a psychophysical experiment designed
to investigate the task of human target discrimination when

10.gre~qion Parametff, combined with visual search. The image stiniuli used in this
experinment also consisted of square target patterns embedded

Metritm Max Corre'lation # 3 in background patterns. but in random locations unknown to
1,2,3,4 0.94 -1.18P-+00 6.,-,02 5.48e,-04 1.11o.l 3.0767e.-01 the observers. As each observer performed a visual search of

the scene for targets, his eye fixation point within the
1,2,1 0.91 -,50`•.-01 .,U02 6.77e-04 85i-1 - stimuhls was measured by processing video of the observer's
1,21,4 0.94 -1.1'4-00 6.91e-02 5.57e-+ - 3.22-o eye. By integrating search and discrimination, we can

indirectly measure perceived target distinctness by measuring
1,A,4 0.89 -1.,5,..+00 4.031-02 0.00e-01 4.37e-01 various statistics that indicate how easily the observers

2,3,4 CR9 -1.20e4-00 1.51e+00 2.0.Ol1 located it. including the likelihood the target was fixated or
identified and the time required to do so. These computed

In the table. the second column lists the value of the statistics will also serve as a quantitative basis for evaluating
maximum correlation coefficient computed between the scale the relative effectiveness of our target distinctness metrics at
values and the linear combination of metrics in the first representing perceived target distinctness.
column. The remaining columns list the values of the
regression parameters for which the model yields the
mnaximnum correlation value, corresponding to the k + 5 ie n
parameters in 6 = (XX')- . In each case. the value listed in The iniages used in the visual search experiment were

extracted from a set of natural scenes of various locations in

the [P0 column is the value of the additive constant parameter southern California. All of the images were obtained using a
in the linear model for the optimnum case. The values of Nikon 35amm camera and developed as 8 x 10 inch color
these regression parameters do not absolutely indicate the enlargements. The enlargements were digitized at 120 pixels
relative importance of each metric in the model, since they per inch using a l lewlett Packard digital scanner. The scenes
provide both weighting and normalizing of the metrics. 'Fhev include a wide variety of both terrain and vegetation
are included simply to illustrate that although the maximum conditions such as fo6rests. mountains. fields, and deserts.
correlations for the models are rather high. their eventual Great care was taken to ensure that no man-made objects or
utility depends on the proper selection of values for several animals appear in the scenes. The viewing perspective of
parameters. each scene is such that the viewer is looking down from

When the metrics were considered two at a time. the highest above, and the viewing distance varies from as close as 1 00mn
correlation (0.90) was obtained for a linear combination of to as far as several kilometers.
the Doyle metric with the EffPOT metric. These two Ten 800 x 1200 images were selected from the database as
metrics were also found. in a previous experiment performed representative of the wide variety of possible terrain and
at the U.S. Arny Night Vision and Electronic Sensors vegetation conditions. The color images were converted to
Directorate. to be the best predictors of the probability of gray scale by averaging the red. green. and blue channels.
finding low observable military targets in simulated infrared These ten raw mages were used to create ten stimulus
imagery [51. imaces according to a random scheme. For each stinmlus,

When combinations of three or four metrics were considered, one of the ten raw images was designated as the background
a correlation of 0.94 resulted for the combination of Doyle. image and another of the ten was chosen as the target image.
Eff_ 1OT, and RAIS. The inclusion of the GI,C-based ACE A random number of either four. five. or six was chosen for
metric does not significantly improve this result. Thus. it the numnher of targets. Every target was a square region 48
seems that for the stimuli and resulting psychological scale pixels on each side. A random location was chosen for each
values in this experiment, it is best to use a GIC-based error target square. with the restrictions that no target pixels could
metric if a single metric is desired as a measure of target lie within 96 pixels. or two target dimensions, of the
distinctness. I Iowever. if we allow the inclusion of multiple boundaries of the image. and no target pixels could lie Within
mctrics in the model, it is best to discard the G6,C-based 144 pixels, or three target dimensions, of another target's
metric and instead use the Doyle. Eff POT. and RABS pixels. If a target location was chosen that did not meet these
metrics. But before such a combination model can be used in two restrictions., it was discarded and another random
practice, it will certainly be necessary to conduct further location was chosen. Once the number of targets and target
experimentation to either confirm the robustness of the locations for a particular stimulus were randomly chosen, the
regression parameters that were best for this experiment or to stimulus image was created by using the pixel values of the
determine values that are the better for the particular imagery raw background image for all pixels except target pixels. The
being used. values for the target pixels were taken from the pixels in the

raw target image at the corresponding locations. In this
manner, we obtained a wide variety of naturally occurring
target patterns against different. naturally occurring
background patterns. There were a total of 52 targets in the
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ten image stimuli. Four of the stimulus images are shown in the observer's search for and discrimination of the targets.
the Appendix. When an observer is studying a particular target to decide

whether it is indeed a target, his exact point of fixation will

5.2. Conduct of the Experiment normally move about both within and just outside the target
square, as he looks for cues to assist him in the decision.

Data was collected from a total of 12 different observers. Thus, for the computation of these statistics, a fixation point
Each observer was told that each of the image scenes was considered to be a fixation of a target if it was within the
contained between four and six targets each, and that every target square or within one and one-half target dimensions
target is a square region of a specified size that contains a outside the target square. The statistics computed for the 52
pattern which looks as if it doesn't belong in its location, in targets in the experiment are identification probability (RID
that it looks "unnatural" or "out of the ordinary." He was
asked to identify each target as soon as he sees it, and to find average time to identification ( T<ID ), fixation probability
as many of the targets in each image before proceeding to the ) ti,
next. The ten stimuli were presented to each observer in a (P.,• ) average time to first fixation (T<rx ), and average
different, randomly chosen order. Together with five total fixation time ( Tfmx ). The computations of PID and
calibration images and four zero point images, each observer
was presented a total of 19 images in the experiment. This Pf. are more properly the likelihood of identification and
typically required about 10-15 minutes, during which time fixation for each target, as they are simply calculated as the
the observer was required to hold his head still. Figure 7 proportion of the 12 observers that identified and fixated the
shows the raw fixation point data from one observer for one tane
of the stimulus images. The white cross hairs show the target. The statistics T<Io and T<fl are computed as the
observer's fixation points during the display of that image at time elapsed from the moment the image was first displayed
the discrete sample times, with consecutive sample points until the observer first identified or fixated the target,
connected by a straight line to indicate the eye movement, averaged over only those observers that did indeed identify
The fixation points at each of the moments that the observer or fixate the target. The statistic Tfix is computed as the
pressed the middle mouse button are shown as small white
square blocks. These correspond to areas suspected by the total time the observer spent fixating the target area,observer to be targets, averaged over all 12 observers. The set of target distinctness

metrics were computed for all 52 targets in the experiment.
For each calculation, the background was considered to
consist of all pixels not in the target square but within one
target dimension. Table 4 gives the sample correlation
coefficient (r) computed between the five vectors of
computed target fixation and identification statistics and the
vector of each of the target distinctness metrics. From Table
4, we see that for the PID and Pfix statistics we have r > 0

for all of the target distinctness metrics considered. A target
that is more distinct is more likely to be fixated and/or

identified. We also see that for the T<1D and Tflx

statistics we have r < 0 for all of the metrics. A target that is
more distinct will likely be fixated and/or identified in less
time. The second-order ACE metric exhibited the strongest

Figure 7: The raw fixation point data from one correlations for Ta<D , T<fix , and TfX . For PID, ACE was

observer for one of the stimulus images. The white just behind RABS for the most strongly correlated.
streaks indicate the observer's fixation points, Figure 8 shows plots of the 52 targets in the search
while suspected target locations are shown as small experiment, with the horizontal axis representing the
white square blocks. computed value of the ACE metric and the vertical axis

5.3. Target Fixation and Identification Statistics representing the PID and T<ID statistics.

5.4. Analysis of the Results
The data provided by ITEMS for every observer consists of
the fixation point coordinates in the display image and the thi expeimetwe he fnd tat themagitueso
corresponding timestamp for each sample, along with the
timestamp and button identifier for every press of a mouse metrics and the probability of identification ( PID) were as

button during the session. Since the mouse button presses high as 0.43 and for average time to identification ( T<ID
are the means by which the observer both controls the image were as high as 0.62. Although these values do indicate
display process and indicates he is fixating targets, and the werelatohi ps we Althougb the re do iny
locations of all targets in the image stimuli are known, this strong relationships, we must realize that there are many
data is sufficient for computing various statistics describing amore variables contributing to whether an observer identifiesdatais uffciet fr coputng arius tatitic decriinga target and the time required to locate a target than .just the
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Figure 8: The 52 targets in the search experiment plotted with their identification statistics and the computed values of
the ACE metric.

TABLE 4: The sample correlation coefficient (r) between pixels. A G(IC model may be able to capture at
least some of all of these variables. Second-order

computed between the five vectors of target probabilities inherently contain first-ordcr probabilities, in

fixation and identification statistics and the vector that a pattern's histogram can be obtained by summing over

of each of the target distinctness metrics, all rows or over all columns of one of its I1 bC matrices.

Also. if two patterns have (t ,C models that arc significantly
different. it is apparent that a distinctly abrupt boundary is

PjD T<zD P/.ja T<1.. Tj i. more likely if the two patterns are placed adjacent to each
other.

A T 0.30 -0.55 0.28 -0.47 -0.32.

Doyle 0.30 -0.54 0.34 -0.49 -0.29 6. CONCLUDING REMARKS

In our future studies. we wish to determine wvhich cue is most

EfL-POT 0.35 -0.43 024 -0.38 -0.215 important for each target and use a metric appropriate for that
target. instead of trying to use the same metric for every

ACE, 0.42 -0.62 0.31 -4).$W) -0.33 target. Or, perhaps a proper weighting of the relative
importance of the three perceptual cues could be determined

AB S 0.'23 -0.25 0.19 -0.31 0.09 for every target. and used to form a composite metric.
Additionally, the variable of target size must be factored into

RAB.S 0.43 -0.43 0.35 -0.42 -0.05 tile metrics. In our experiments, we also did not vary the size
-__ _ of the field of view. which most certainly has an effect on

distinctness of the target. It is also important to realize that search times. We feel also that the spatial location of the
even if there is a direct relationship between two variables, target in the image (such as center or periphery) and global
the computed value of a correlation coefficient between them variables such as scene clutter have an effect. The model
may not be high if the relationship is not linear, should also account for the effects of competing targets and

Overall, of the set of target distinctness metrics considered, other points of interest, as well as false alarms 131, 32].

the second-order Gt,C-based ACE metric was tile most As for the experimental methodology presented in this paper,
strongly correlated with the psychophysical data. Although both the pure discrimination and the search experiment
the observers were not instructed as to what cues they were allowed us to study perceived target distinctness. But the
to use in making their judgments, we can surmnise that the search experiment provided us with data that can be used to
observers probably utilized some combination of differences develop or test models describing various aspects of the
in brightness (contrast), differences in texture, and abrupt search and discrimination processes, rather than only the
discontinuities along target/background boundaries. final result. And not ounl do we have fixation data that
Certainly differences in target and background first-order include two-dimensional inimace coordinates. but also a third
pixel probabilities are important. since the> represent pattern diniension of time. which will allow us to include this
contrast and variation. But second-order probabilities are diniension in the model.
important too, since they better represent the general concept Besides target search and discriniination. it is apparent any
of texture by taking into account the spatial relationships study of human visual perception can benefit from measuring
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